Structure in nascent RNA leads to termination of slippage transcription by T7 RNA polymerase.

نویسندگان

  • I Kuzmine
  • P A Gottlieb
  • C T Martin
چکیده

T7 RNA polymerase presents a very simple model system for the study of fundamental aspects of transcription. Some time ago it was observed that in the presence of only GTP as a substrate, on a template encoding the initial sequence GGGA., T7 RNA polymerase will synthesize a 'ladder' of poly-G RNA products. At each step, the ratio of elongation to product release is consistently approximately 0.75 until the RNA reaches a length of approximately 13-14 nt, at which point this ratio drops precipitously. One model to explain this drop in complex stability suggests that the nascent RNA may be structurally hindered by the protein; the RNA may be exiting via a pathway not taken by normally synthesized RNA and therefore becomes sterically destabilized. The fact that the length of RNA at which this occurs is close to the length at which the transition to a stably elongating complex occurs might have led to other mechanistic proposals. Here we show instead that elongation falls off due to the cooperative formation of structure in the nascent RNA, most likely an intramolecular G-quartet structure. Replacement of GTP by 7-deaza-GTP completely abolishes this transition and G-ladder synthesis continues with a constant efficiency of elongation beyond the limit of detection. The polymerase-DNA complex creates no barrier to the growth of the nascent (slippage) RNA, rather termination is similar to that which occurs in rho-independent termination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies of RNA release reaction catalyzed by E. coli transcription termination factor rho using isolated ternary transcription complexes.

Protein factor rho catalyzes site-specific termination of transcription in a reaction requiring hydrolysis of nucleoside triphosphate with eventual release of RNA from RNA polymerase and DNA template. We have characterized the rho-catalyzed RNA release reaction using isolated transcription complexes. Transcription complexes containing T7 D111 DNA, RNA polymerase, and 3H-labeled nascent RNA were...

متن کامل

Transcription termination by bacteriophage T7 RNA polymerase at rho-independent terminators.

We have investigated the mechanism of transcription termination by T7 RNA polymerase using templates encoding variants of the transcription-termination structure (attenuator) of the regulatory region of the threonine (thr) operon of Escherichia coli. The thr attenuator comprises the following two distinct structural elements: a G + C-rich inverted repeat, which encodes an RNA hairpin structure,...

متن کامل

Bacteriophage λ N protein inhibits transcription slippage by Escherichia coli RNA polymerase

Transcriptional slippage is a class of error in which ribonucleic acid (RNA) polymerase incorporates nucleotides out of register, with respect to the deoxyribonucleic acid (DNA) template. This phenomenon is involved in gene regulation mechanisms and in the development of diverse diseases. The bacteriophage λ N protein reduces transcriptional slippage within actively growing cells and in vitro. ...

متن کامل

Dissociation of halted T7 RNA polymerase elongation complexes proceeds via a forward-translocation mechanism.

A recent model for the mechanism of intrinsic transcription termination involves dissociation of the RNA from forward-translocated (hypertranslocated) states of the complex [Yarnell WS, Roberts JW (1999) Science, 284:611-615]. The current study demonstrates that halted elongation complexes of T7 RNA polymerase in the absence of termination signals can also dissociate via a forward-translocation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 29 12  شماره 

صفحات  -

تاریخ انتشار 2001